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Abstract 

We investigate the effects of explaining anomalies (i.e., 
observations that conflict with current beliefs) on belief 
revision, and in particular how explaining contributes to the 
rejection of incorrect hypotheses, the generation of 
alternative hypotheses, and the selection of a hypothesis 
that can account for anomalous observations. Participants 
learned how to rank students across courses using 
statistical concepts of deviation, and did so while either 
explaining sample rankings or writing their thoughts during 
study. We additionally varied whether or not candidate 
hypotheses about the basis for ranking were presented to 
participants prior to learning, and the number of sample 
rankings that violated intuitive misconceptions about 
ranking. Measures of learning and coded responses suggest 
that prompting people to explain can increase the rate at 
which they entertain both correct and incorrect hypotheses, 
but that explaining promotes the selection of a hypothesis 
that can account for anomalous observations. 

 

Keywords: explanation; self-explanation; learning; 
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Introduction 
A critical element of successful learning is the ability to 
flexibly revise beliefs in light of new data and experience. 
For example, a mathematics student might form tentative 
beliefs about how to solve a novel problem, but 
subsequently revise these beliefs in the face of anomalous 
data: observations that conflict with working assumptions 
and therefore signal a need to revise beliefs (Chinn & 
Brewer, 1993; Koslowski, 1996). Here we consider how 
beliefs are revised in light of anomalous observations, and 
in particular how explaining such observations influences 
learning. 

Generating explanations has been shown to promote 
learning across a range of tasks and domains, with 
evidence from experimental studies of category learning 
(Williams & Lombrozo, 2010), “self-explaining” in 
students (e.g., Fonseca & Chi, 2011), and conceptual 
development in children (e.g., Siegler, 2002; Wellman & 
Liu, 2007). Benefits of explanation are likely to derive 
from multiple sources, including increased engagement 
and increased accessibility of effective strategies (Siegler, 
2002), better metacognitive monitoring (Chi et al, 1994), 
and the generation of inferences to fill gaps in 
understanding (Chi et al, 2000), among others.  

In the present work we build on the Subsumptive 
Constraints account of explanation developed in prior 
research (Williams & Lombrozo, 2010, 2013). According 

to this account, explaining a particular observation drives 
learners to interpret it as an instance of a broad pattern or 
generalization, and thereby facilitates learning about 
regularities that apply broadly (Williams & Lombrozo, 
2010; 2013; Williams, Lombrozo & Rehder, 2013). 

To illustrate, consider the findings reported in Williams 
and Lombrozo (2010). Participants attempted to learn a 
new classification system involving two categories that 
could be differentiated by a rule with no exceptions 
(100% rule) or an alternative that accounted for most 
cases, but with two anomalies (75% rule). Participants 
who were prompted to explain were significantly more 
likely to discover the 100% rule than those prompted to 
describe the category members, think aloud, or engage in 
free study. These findings confirm the prediction that 
explaining facilitates learning about broad patterns, and 
also suggest that explaining could make learners 
especially sensitive to anomalies, as they signal that 
current beliefs are limited in scope if not false. 

Subsequent research, however, suggests a more 
complicated relationship between explanation and 
anomalies. Williams and Lombrozo (2013) found that 
participants prompted to explain favored patterns 
consistent with prior knowledge, even when such patterns 
had exceptions (anomalies) that were better explained by 
alternative patterns. Williams, Lombrozo, and Rehder 
(2013) found that participants prompted to explain were 
more likely to overgeneralize broad patterns, effectively 
ignoring exceptions, even when this resulted in slower 
and less accurate learning.  

Explaining can thus have seemingly opposite effects: 
by encouraging learners to seek broad patterns, explaining 
can sometimes lead to greater belief revision in light of 
anomalies, and at other times to the anomalies being 
effectively dismissed or “explained away” (see also Chinn 
& Brewer, 1993; Khemlani & Johnson-Laird, 2012; 
Koslowski, 1996). As a first step towards understanding 
the conditions under which explanation has each effect, 
Williams, Walker and Lombrozo (2012) investigated how 
changing the number of anomalous observations 
presented interacted with a prompt to explain. We begin 
by briefly reviewing the results from this study, and 
additionally present novel analyses concerning 
participants’ coded explanations. We then present a new 
experiment aimed at differentiating two potential roles for 
explanation: one in the rejection of current hypotheses in 
light of anomalies, and another in the generation or 
selection of new hypotheses.  



Explaining anomalies: Previous findings 
In previous work, we explored the effects of generating 
explanations for observations that were anomalous with 
respect to learners’ prior beliefs about statistical measures 
(Williams, Walker, & Lombrozo, 2012). Participants 
learned a university’s ranking system by studying how 
pairs of students from different courses had been ranked 
on the basis of the students’ grades and the means and 
standard deviations of their respective courses. The task 
required learners to compare student grades using 
concepts analogous to z-scores, and therefore rejecting 
commonly endorsed but non-normative principles for 
ranking. These non-normative principles included ranking 
students based on the higher raw score, the greater 
number of points above the course mean, or closeness to 
the maximum course score (Schwartz & Martin, 2004).  

A realistic and experimentally useful feature of this task 
was that participants could encounter ranked student pairs 
that were either consistent or anomalous with respect to 
non-normative principles for ranking. In many ranked 
student pairs, the student who is a greater number of 
standard deviations above the mean will also have a 
higher raw score, be farther from the mean, or closest to 
the maximum. We call sample rankings that are consistent 
with all of the identified ranking principles consistent 
items, and those that are only consistent with the use of z-
scores anomalous items because they are anomalous with 
respect to many participants’ prior beliefs (see Fig. 1). 

Williams, Walker, and Lombrozo (2012), henceforth 
WWL12, presented participants with five examples of 
ranked pairs of students to learn a university’s method for 
ranking students. Participants’ study task was either to 
explain why the higher ranked student was ranked higher, 
or to write thoughts they had while studying the pair. Of 
the five example pairs, there was either a single anomaly 
(and four consistent pairs) or multiple anomalies (four 
anomalies, one consistent pair). WWL12 found that belief 
revision was greatest when participants explained and 
received multiple anomalies. Explaining did not promote 
belief revision when only a single anomaly was presented, 

and multiple anomalies had no effect on learning unless 
participants explained.  

Belief revision was measured by a change in pre- to 
post- study accuracy in making judgments about novel 
pairs of students, which were designed so that the use of 
the normative principle concerning deviation would 
identify one student as being ranked higher, while the 
non-normative principles would identify another student.  

While these findings suggest that explaining may be 
especially potent for ensuring that learners process 
anomalies and use them in updating beliefs, there are 
several accounts of why explaining might have this effect 
that are not ruled out by the pre- to post-test accuracy 
measures. In particular, this measure involved a 
competition between use of normative and non-normative 
principles, and therefore cannot differentiate – for 
example – a decrease in belief in non-normative 
principles from an increase in belief in the normative 
principle.  

More specifically, explaining anomalies could be 
improving accuracy by increasing the rejection of the 
non-normative principles that were inconsistent with the 
anomalies, or by increasing the generation and selection 
of the normative principle. Either of these would account 
for the observed belief revision, and in fact, the effects 
could be due to a combination of both. 

To evaluate these possibilities, we report here the 
results of coding the written responses that participants 
provided in the explain and write thoughts conditions. We 
coded for whether participants mentioned any of the non-
normative principles and whether they identified standard 
deviation as playing an important role in rankings. 

Verbal Response Coding 
Each of the five written responses participants provided 
during the study phase of the experiment was coded 
according to the following criteria: whether a response 
mentioned a non-normative principle, whether it 
mentioned the relative-to-deviation principle (i.e., 
standardized z-scores, whether or not participants used 

(a) Sarah got 85% in a Sociology class, where the 
average score was 79%, the average deviation was 3%, 
the minimum score was 67%, and the maximum score 
was 90%.   
 
Tom got 69% in a Art History class, where the average 
score was 65%, the average deviation was 8%, the 
minimum score was 42%, and the maximum score 
was 87%. 
 
Sarah was ranked more highly by the university than 
Tom. 

 

(b) Sarah got 85% in a Sociology class, where the 
average score was 79%, the average deviation was 8%, 
the minimum score was 67%, and the maximum score 
was 90%. 
   
Tom got 69% in a Art History class, where the average 
score was 65%, the average deviation was 3%, the 
minimum score was 42%, and the maximum score 
was 87%. 
 
Tom was ranked more highly by the university than 
Sarah. 

 
Figure 1: (a) A consistent ranked example for which all four principles predicted the same ranking. (b) An anomalous 

ranked example constructed by switching the class average deviations of the consistent example from Figure 1a. The 
switch means that the correct relative-to-deviation ranking is now the opposite of what is predicted by the raw-score, 
relative-to-average, and relative-to-highest-score principles. Emphasis is added for illustration and was not provided to 
participants. 



technical terminology to convey the idea), and whether it 
contained some other response, such as expressions of 
surprise or confusion, disagreement with the ranking, or 
mention of other features of the pairs. 
 
Non-Normative Principles The three non-normative 
principles were incorrect but designed to correspond to 
intuitive statistical misconceptions. We term the 
principles (1) raw-score: the higher ranking went to the 
student with the higher score, irrespective of mean, 
average deviation, and minimum or maximum score; (2) 
relative-to-average: the higher ranking went to the 
student whose score was the farthest above (or least 
below) the class’s mean score; (3) relative-to-highest-
score: the higher ranking went to the student whose score 
was the closest to the highest score achieved in the class.  

 
Relative-to-Deviation Principle According to this 
principle, the better student was the one who scored a 
greater number of standard (average) deviations above the 
mean (see Schwartz & Martin, 2003; Belenky & Nokes-
Malach, 2012). This was calculated as the difference from 
the mean divided by the average deviation, and is closely 
related to normative measures such as the standard 
deviation and z-score. 

Response Coding Results 
Principles Cited A task (2: explain, write thoughts) x 

number of anomalies (2: single, multiple) x principle type 
(non-normative, relative-to-deviation) mixed ANOVA 
was conducted on the proportion of responses that 
mentioned each type of principle (see Fig. 2).  

This analysis revealed main effects of task, F(1, 272) = 
43.98, p < 0.001, ηp

2 = 0.14, and number of anomalies, 
F(1, 272) = 37.15, p < 0.001, ηp

2 = 0.12. Overall, 
explaining increased mention of principles, while 
multiple anomalies led to decreased mention of 
principles.  

There was also a main effect of principle type, F(1, 
272) = 49.90, p < 0.001, ηp

2 = 0.16, with non-normative 
principles mentioned more frequently than the relative-to-
deviation principle. However, this effect was qualified by 
an interaction between number of anomalies and principle 
type, F(1, 272) = 40.52, p < 0.001, ηp

2 = 0.13. We 
therefore conducted separate task x number of anomalies 
ANOVAs for the two principle types. 

Non-normative principles were cited more often by 
participants prompted to explain, F(1, 272) = 19.03, p < 
0.001, ηp

2 = 0.07, and less often by those who encountered 
multiple anomalies, F(1, 272) = 96.49, p < 0.001, ηp

2 = 
0.26, with no interaction. 

The relative-to-deviation principle was likewise cited 
more often by participants prompted to explain, F(1, 272) 
= 13.14, p < 0.001, ηp

2 = 0.05, with no significant effect 
of the number of anomalies, F(1, 272) = 1.89, p = 0.17, 
ηp

2 = 0.01. 
 

Number of Different Principles Cited A task x number 
of anomalies ANOVA was performed on the mean 
number of different principles cited by each participant 
(see Fig. 3). Participants prompted to explain mentioned a 
greater number of different principles, F(1, 272) = 16.20, 
p < 0.001, ηp

2 = 0.06, and multiple anomalies resulted in 
mention of fewer different principles, F(1, 272) = 31.36, p 
< 0.001, ηp

2 = 0.10. There was also a task x number of 
anomalies interaction: explaining robustly increased the 
number of different principles mentioned in the multiple 
anomalies condition, t(125) = 3.97, p < 0.001, d = 0.70), 
while the effect in the single anomalies condition was not 
significant, t(147) = 1.55, p = 0.12, d = 0.25. 

 

 
Figure 2: Data from WWL12: Mean proportion of 
responses citing either a non-normative principle (upper 
panel) or the relative-to-deviation principle (lower panel). 

 

  
Figure 3: Data from WWL12: Mean number of different 
principles mentioned by each participant. 

Summary and Discussion 
The results of coding responses from WWL12 suggest 

that the effects of explanation on learning are not 
principally a consequence of rejecting principles in light 



of anomalies, at least not in this kind of task. Explaining 
increased the rate at which participants mentioned the 
correct relative-to-deviation principle, but also how often 
participants mentioned non-normative principles, and how 
many different principles were cited. Instead, it appears 
that explanation played an important role in the 
generation of multiple hypotheses and the selection of the 
correct hypothesis from among them. 

We now present a new experiment that aims to better 
understand the role of explanation in generating the 
correct hypothesis as opposed to evaluating and selecting 
the correct hypothesis from among candidates. In order to 
do so, we replicate the basic design of WWL12 with an 
additional manipulation: whether or not participants are 
presented with a fixed set of candidate hypotheses, 
including the relative-to-deviation principle, prior to 
learning. 

Experiment 
Our experiment manipulated whether participants were 
asked to explicitly consider potential ranking principles 
before engaging in learning. Specifically, participants in 
the exposure condition were presented with descriptions 
of five candidate principles and rated their plausibility. 
Participants in a no exposure condition completed the task 
without this initial presentation of candidate hypotheses, 
effectively replicating WWL12 (see Bonawitz & 
Griffiths, 2010, for a similar manipulation).  

As in WWL12, we additionally varied whether 
participants received instructions to explain or to write 
thoughts, and whether they encountered a single anomaly 
or multiple anomalies during study. 

If the main role of explanation in WWL12 was to 
facilitate the generation of candidate hypotheses – and 
therefore of the relative-to-deviation principle – then the 
exposure manipulation should mimic effects of 
explanation in the write thoughts condition, and 
potentially eliminate differences across study conditions. 
In contrast, if explaining principally or additionally plays 
a role in the evaluation and selection of the correct 
hypothesis (i.e., the relative-to-deviation principle, which 
accounts for all observations), then we should observe 
effects of explanation even in the exposure condition. 

Methods 
Participants Seven-hundred-and-twenty-seven members 
of the Amazon Mechanical Turk community participated 
in exchange for monetary compensation. Four-hundred-
and-eighty additional participants were excluded for 
failing an instructional manipulation check adapted from 
Oppenheimer et al. (2009) and designed to evaluate 
whether participants were reading instructions. The 
number of excluded participants did not differ as a 
function of condition, all ps > 0.10. 
 
Materials & Procedure The materials and procedure 
mirrored WWL12, except as noted. 

Pre-Test. Participants were presented with ten unranked 
student pairs and judged how likely the university would 
be to rank one student above another, on a nine point 
scale ranging from “Definitely student [X]” to “Definitely 
student [Y],” with a midpoint of “Equally Likely.” 

Unlike WWL12, six pre- and post-test items pitted the 
relative-to-deviation principle against a single one of the 
non-normative principles, with the other two non-
normative principles predicting that the students were 
equally ranked. Of the ten pairs, two pitted the relative-to-
deviation principle against the raw-score principle; two 
against the relative-to-average; and two against the close-
to-highest-score. Four pairs were like the anomalous 
study pairs in pitting the relative-to-deviation principle 
against all three non-normative principles.  
 
Pre-Exposure to Principles. In the exposure condition, 
after the pre-test and before the study phase, participants 
were shown an example pair of students and told who was 
ranked higher. This ranking was consistent, similar to the 
example in Figure 1a. Participants were then presented 
with 5 potential rules the university could use to rank 
students, and asked to judge, on a scale from 1-7, how 
likely it was that the university used that particular rule. 
The rules included all four principles discussed above, as 
well as an additional average-plus-deviation principle.1 
This favored whichever student was the greater number of 
percentage points above the average plus average 
deviation, in part to include a second principle that 
involved deviation and therefore avoid biasing 
participants towards the relative-to-deviation principle. 
 
Study. Each of the five ranked examples was presented 
onscreen for exactly 90 seconds in a format similar to 
Figure 1a and 1b. Participants in the explain condition 
were prompted to explain why the higher-ranked student 
was ranked more highly, typing their explanation into a 
text box onscreen. Participants in the write thoughts 
control condition were told to type their thoughts during 
study into an equivalent text box.  
 
Post-Test. The post-test was identical to the pre-test, but 
all student names and grades were changed, with five 
points added to each grade to generate novel numbers 
while preserving the way in which the items pitted the 
principles against each other. 
 
Additional Measures. Additional questions were asked at 
the end of the experiment (e.g., demographics, sufficient 
time for task, strategy) but are not discussed here in the 
interest of space. 

                                                             
1 We thank Daniel Belenky (personal communication) for 
suggesting this as an additional principle that participants 
might find compelling and spontaneously employ.  

 



Results 
Learning Pre-test accuracy did not differ significantly 

as a function of condition (all ps > 0.2); we subsequently 
consider the change in pre- to post-test accuracy as our 
measure of learning. 

A task x number of anomalies x exposure ANOVA on 
the pre- to post- test change in accuracy found main 
effects of explanation, F(1, 719) = 15.06, p < 0.001, ηp

2 = 
0.02, and number of anomalies, F(1, 719) = 29.59, p < 
0.001, ηp

2 = 0.04, with no significant effect of exposure, 
F(1, 719) = 1.81,  p = 0.18, ηp

2 < 0.01, nor interactions 
(see Fig. 4). Participants prompted to explain showed 
greater learning than those who were not so prompted 
(whether they observed one or multiple anomalies), and 
participants who saw multiple anomalies learned more as 
well (whether or not they explained).  

 
Principles Cited To analyze the relative frequencies with 
which non-normative and normative principles were cited 
in each response, we conducted a repeated-measures 
ANOVA with principle type (non-normative principle, 
relative-to-deviation principle) as a within-subjects factor 
and task (2), number of anomalies (2), and exposure (2) as 
between-subjects factors. This analysis revealed a four-
way interaction, F(1, 717) = 8.01, p < 0.01, ηp

2 = 0.01. 
We therefore conducted separate task x exposure x 
principle ANOVAs for the single anomaly and multiple 
anomalies conditions.  

In the single anomaly condition, this analysis revealed 
that explaining promoted overall mention of principles, 
F(1, 448) = 13.44, p < 0.001, ηp

2 = 0.03, and that non-
normative principles were mentioned more frequently 
than the relative-to-deviation principle, F(1, 448) = 67.30, 
p < 0.001, ηp

2 = 0.13. There were no other significant 
effects – in particular, the effect of exposure was not 
significant, F(1, 448) < 0.01, p = 0.99, ηp

2 < 0.01.  
In the multiple anomalies condition, there was a task x 

exposure x principle interaction, F(1, 269) = 5.28, p < 
0.05, ηp

2 = 0.02. Participants who explained and were 
exposed to the hypotheses beforehand were more likely to 
mention the relative-to-deviation principle over the non-
normative principles, relative to those who explained 
without exposure. A task x exposure ANOVA for just 
non-normative principles revealed a main effect of 
explaining, F(1, 269) = 5.66, p < 0.05, ηp

2 = 0.02, and a 
significant interaction, F(1, 269) = 7.76, p < 0.05, ηp

2 = 
0.03. For the relative-to-deviation principle, there was 
only a main effect of explaining. F(1, 269) = 10.03, p < 
0.01, ηp

2 = 0.04. 
 

Number of Different Principles Cited The average 
number of different principles cited was analyzed with a 2 
(task) by 2 (number of anomalies) by 2 (exposure) 
ANOVA, which revealed more principles in the explain 
condition than the write thoughts condition, F(1, 712) = 
26.73, p < 0.001, ηp

2 = 0.04, with a marginal effect of 
exposure, F(1, 712) = 2.81, p = 0.09, ηp

2 < 0.01. There 

was also an interaction between task and exposure, F(2, 
712) = 4.51, p < 0.05, ηp

2 = 0.01: explanation’s boost in 
number of principles cited was considerably attenuated 
when participants were exposed to the principles before 
study. This finding suggests that participants did attend to 
the exposure task, even though it did not affect learning. 

 
Figure 4: Change in accuracy from pre- to post-test. 

 
Figure 5: Mention of non-normative principles and the 

relative-to-deviation principle (per-response). 
 

    
Figure 6: Number of different principles mentioned by 

each participant. 
 
Relationship Between Coded Responses and 

Learning To investigate the relationship between 
participants’ responses to the explain and write thoughts 
prompts and their learning as reflected on the post-test, 
we examined correlations and partial correlations between 
response types and accuracy. The largest contributor to 
post-test accuracy was the proportion of responses citing 



the relative-deviation-principle, r(725) = 0.60, p < 0.001,  
followed by the negative effect of the proportion of 
responses citing the non-normative principles, r(725) = -
0.38, p < 0.05. Even conditioning on pre-test accuracy, 
task, number of anomalies, and exposure, post-test 
accuracy was positively correlated with citing the 
relative-to-deviation principle, r(640) = 0.45, p < 0.001,  
and negatively correlated with citing non-normative 
principles, r(640) = -0.26, p < 0.001. These findings 
suggest that coded responses reflected learning, and are at 
least consistent with the stronger claim that producing the 
responses was itself a causal factor in driving learning.  

Discussion 
The present findings contribute to a large body of work 

demonstrating beneficial effects of explanation on 
learning. Participants who were prompted to explain 
reliably outperformed those in a write thoughts control 
condition when it came to learning how a university 
ranked students, a task that required some understanding 
of population variance or deviation. We found this effect 
regardless of whether participants observed a single 
anomaly or many, and whether they received exposure to 
candidate hypotheses or did not. 

Analyses of participant responses to the explain and 
write thoughts prompts shed additional light on the role of 
explanation in rejecting incorrect hypotheses, generating 
candidate hypotheses, and selecting the correct 
hypothesis. If it were the case that explaining anomalous 
observations made learners more likely to reject 
hypotheses that failed to account for those observations, 
then we would have expected participants prompted to 
explain to produce non-normative principles less often 
than controls.  In contrast to this prediction, we found that 
participants prompted to explain were more likely to 
produce non-normative principles, and also more likely to 
produce a larger number of different principles. This 
result – found in WWL12 and replicated again – suggests 
that explanation instead played a role in the generation 
and selection of the correct hypothesis concerning 
ranking.  

Our new experiment helped isolate effects of 
explanation due to hypothesis generation from those of 
hypothesis selection. We found that “generating” 
candidate hypotheses for learners did not mimic effects of 
explanation, and that explanation improved learning even 
when candidate hypotheses were provided in both study 
tasks. This finding suggests that explaining played an 
important role in the comprehension or selection of the 
correct hypothesis (see also Siegler, 2002). 

We began this paper by considering the role of 
explaining anomalies on the revision versus preservation 
of current beliefs. The learning data from Williams, 
Walker, and Lombrozo (2012) suggested an interaction, 
where explanation facilitated belief revision in the face of 
multiple anomalies, but not one. The current experiment 
failed to replicate this interaction, instead finding 

relatively uniform benefits of explanation across 
conditions. The present results therefore suggest a 
widespread role for explanation in facilitating belief 
revision, and leave the identification of conditions under 
which explaining anomalies preserves current beliefs as a 
question for future research. 
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